

Frequenzumrichter und ihre Wirkung auf Kälteverdichter

Dr. John P. Gibson (Ph.D.)

ART OF COMPRESSION COLLOQUIUM

3. Mai 2012

INHALT

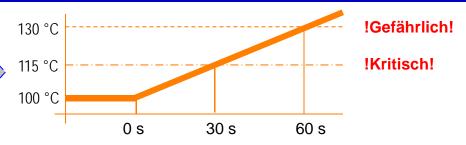
Verdichterauswahl: **Designkonzept "2004"** (klassisch)

Verdichterauswahl: Designkonzept "2012" (Vorschlag)

- Verdichteranlauf-SZENARIEN
- Referenzpunkte für den Anlauf, Kältemittel-Faktoren
- Verdichtertypen, Anlaufmoment-Faktoren
- Umgebungstemperatur, Rack Assisted Starting (RAS) verbundentlastender Anlauf
- Motoranlaufstrom, Maximalfrequenzen
- Auswahl des Umrichters, FU-Typen
- Auswahl-Software

Verdichter-Verbund-Design

- Steuerfaktor (= CF, Control Factor)
- Verbundkonfigurationen
- Intelligente Grenzwertverschiebung, Schätzung von f_{max}
- Auswahl-Software, Leistungswerte



Installationsbeispiele

Frequenzumrichter und ihre Wirkung auf Kälteverdichter Prioritiäten

Überhitzung der Motorwicklung durch Anlaufüberlastung vermeiden

Schutz des Verdichters

- Gefahr: zu geringes Anlaufmoment
- Überlasterkennung → Sofortige Stromunterbrechung
- Wichtig: Sperrzeit für Motorabkühlung vor dem nächsten Anlaufversuch

Optimaler FU-Einsatz

 Erreichen des höchsten mögl. Anlaufmoments (Warum keine Vektorregelung?)
 t_{Wicklung}: -20 ... 100 °C → R_{Cu}: 100 ... 147 %

Ökonomische Gesichtspunkte

- Integrierter Schutz des Verdichters
- Einsatz des kleinstmöglichen Frequenzumrichters
- Höhere Kälteleistung des Verdichters (70 Hz → ca.
 40 % mehr Leistung)

Frequenzumrichter und ihre Wirkung auf Kälteverdichter

Verdichterauswahl: **Designkonzept "2004"** (klassisch)

METHODIK

<u>Maximalen Motorstrom</u> (Verdichtersoftware) Finde:

Kompensations-Factor Fc für Verdichteranlauf - • 4 Zylinder: $F_4 = 1.6$ Erwäge:

Schätze: benötigten Motoranlaufstrom

Frequenzumrichter (I_{max FU} > Motoranlaufstrom) Wähle:

2 Zylinder : F₂ = 2.0

• 6 Zylinder: F₆ = 1.5

VORTEILE

- Verdichtersicherheit gewährleistet
- Einfache Vorgehensweise
- Universell

EINSCHRÄNKUNGEN

Berücksichtigt nicht:

- Kältemittel-Eigenschaften
- Niedertemperatur-Verdichter mit kleinem Motor
- Pull-down im Verdichterverbund
- Oft Überdimensionierung des Verdichters

Frequenzumrichter und ihre Wirkung auf Kälteverdichter

Verdichterauswahl: Designkonzept "2012" (Vorschlag)

METHODIK

Wähle: Anlauf- SZENARIUM (t₀, t_c)

Prüfe: Motorstrom am Referenzpunkt (R404A: +5/+45 °C)

Prüfe: Kältemittel-Faktoren (Basis-Kältemittel: R404A)

• Prüfe: <u>Verdichtertype</u>, <u>Faktor Anlaufmoment</u> (1.0 ... 2.0)

Prüfe: Rack Assisted Starting (RAS) – verbundentlastender Anlauf

(vor dem Anlauf pull-down \rightarrow t₀)

Prüfe: <u>Umgebungstemperatur</u> (t_{Umg} → t_c)

Berechne: benötigter <u>Motoranlaufstrom</u> (aus Ersatzschaltbild des Motors)

Wähle: Frequenzumrichter (I_{max Umrichter} > Motoranlaufstrom)

VORTEILE

Ökonomischeres Design mit höherer Verdichtersicherheit (oft Einsatz eines kleineren FUs möglich)

EINSCHRÄNKUNGEN

Auswahlsoftware benötigt (zu komplex für manuelle Auswahl)

Verdichteranlauf-SZENARIEN

SZENARIUM I

Anlaufen nach **Druckausgleich**

Realistisch:

$$t_0$$
, $t_c \approx t_{amb}$

- Anlauf:
 - Niedriges Moment (kleiner Umrichter)

Normalerweise nicht Kälte-relevant

SZENARIUM II

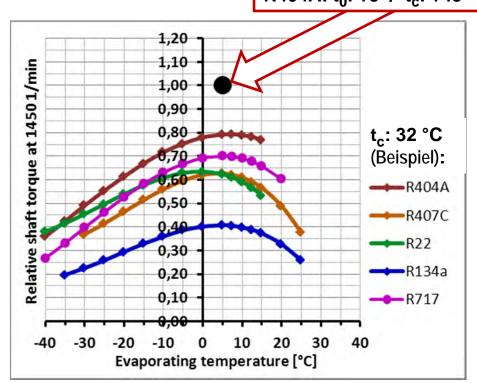
Anlauf nach Netzausfall bei hoher t_{Umgeb}

- Vorschlag Referenzpunkte: R404A: t_0 : +5 / t_c : +45 °C
- Realistische "worst-case" Anlaufpunkte:
 - t₀: 0...10 °C
 - t_c: t_{Umgeb} max (z.B. 43 °C)
- Kältemittel berücksichtigen
- Anlauf:
 - Hohes Moment (großer Umrichter)
 - Mehr auf den ff. Seiten

SZENARIUM II + RAS

Anlauf nach Netzausfall bei hoher t_{Umqeb} + RAS (Verbundentlastender Anlauf)

- Praktische Möglichkeiten:
 - NK: R404A: $t_0 \le 0$ °C
 - NK: R134a: $t_0 \le 0$ °C
 - TK: R404A: $t_0 \le -20$ °C
- Mögliche Konfigurationen:
 - Einzelverdichter mit Bypass
 - 2x Verdichter jeweils mit **Bypass**
 - ->= 3x Verdichter
- Anlauf:
 - Mittleres Moment (mittelgroßer FU)
 - Mehr auf den ff. Seiten



Referenzpunkte für den Anlauf, Kältemittel-Faktoren

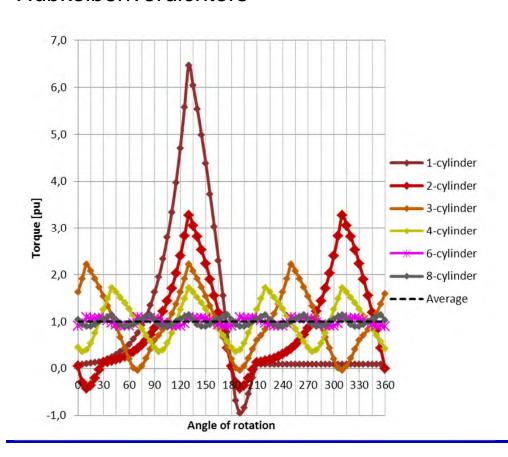
BEISPIEL: Offener, halb-hermetischer Verdichter mittlerer Größe

Referenzpunkt für Anlauf: R404A: t_0 : +5 / t_c : +45 °C

METHODIK

- Wellenleistung / Drehzahl (rad/s) (aus Verdichtersoftware)
 - entspricht Drehmoment
- Höchstes vorkommendes Anlaufmoment

Gewählte Kältemittelfaktoren für $t_c = t_{Umgeb} = 43 \, ^{\circ}C$


R404A / R507A: 0.97 • R407C: 0.80 R22: 0.85 R134a: 0.55 R717 / R727: 0.83

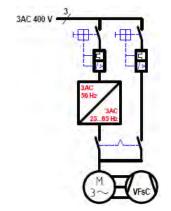
Verdichtertypen, Anlaufmoment-Faktoren

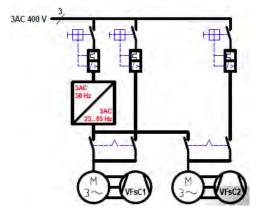
BEISPIEL: Momenten-/Rotationswinkel-Kurven eines rotierenden Hubkolbenverdichters

ANFORDERUNG

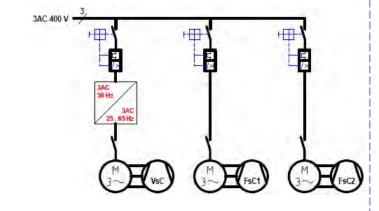
Frequenzumrichter + Motor müssen mindestens das Spitzenmoment bringen, um einen Anlauf zu garantieren

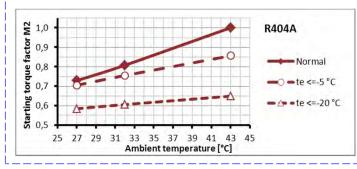
Gewählte **Anlaufmoment -Faktoren** (nicht gleich Strom)

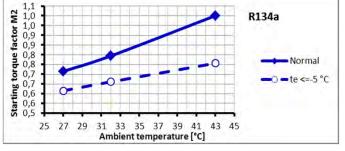

2-Zylinder:	2.00x
3-Zylinder:	1.60x
4-Zylinder:	1.35x
6-Zylinder:	1,30x
8-Zylinder:	1.20x
Scroll, Schraube:	1.20x


Designkonzept "2012" - Umgebungstemperatur,

Rack Assisted Starting (RAS) = verbundentlastender Anlauf

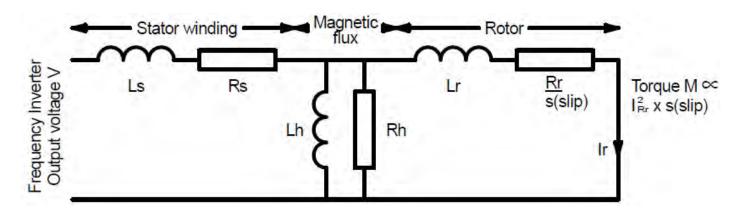

Mögliche RAS-Schaltungen:




2x Verdichter VFsC

1x VsC + >2x FsC Verdichter

Momentenreduzierung


Regelung:

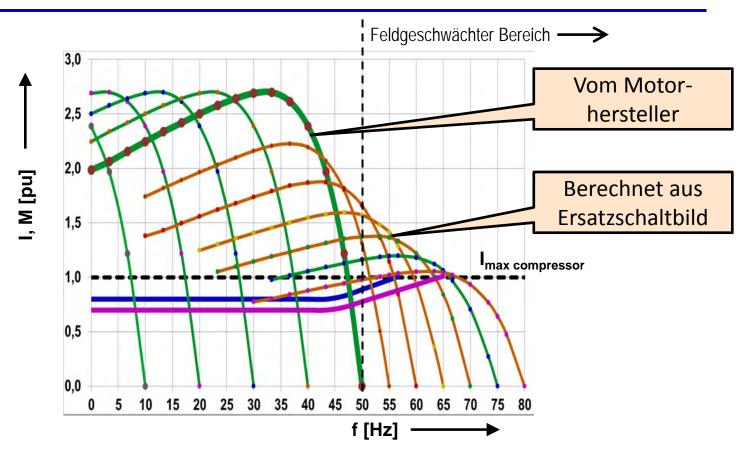
Intelligente Verbundregelung notwendig

Motoranlaufstrom

Methodik: Motor-Ersatzschaltbild verwenden

Problem: Identifizierung der Motorparameter

Lösung: Verfügbare Daten aus der Verdichtersoftware verwenden:


> DOL Strom: I_{DOL} Max. Motorstrom: I_{max} Min. Motorstrom:

I_{min} (z.B. R134a bei -30 / 20 °C mit CC bei >= 4 Zylindern)

Nenndrehzahl: n_{Nenn} Numersiche Datenanalyse

Maximalfrequenzen

Ergebnisse:

- Optimale Inverterparameter-Einstellungen
- Inverterstrom f
 ür zuverl
 ässigen Anlauf
- Maximale Verdichterfrequenz

Auswahl des Umrichters, FU-Typen

Industrieumrichter

Anlaufmoment: 100 %

Überlastschutz: Sonder-Software notwendig

Anlaufzeiten: Sonder-Software notwendig

Strom

begrenzung: Sonder-Software notwendig

Verdichter-

diagnostik: Sonder-Software notwendig

Regelung: Externe Steuerung nötig

Kälteumrichter

Anlaufmoment: 120 ... 125 %

(Referenz R744-TC Anlauf)

Überlastschutz: Standard

Anlaufzeiten: Standard

Strom-

begrenzung: Standard

Verdichter

diagnostik: Standard

Integrierte

 $-p_0, p_c$

intelligente

- Überwachung von:

Regelung:

- Sauggasüberhitzung

- Verdampfungstemp.

- Verbundregelung

Auswahlsoftware

Eingaben: Hersteller [BITZER ... SCI]

Kältemittel [R134a ... R744_TC]

Verdichtertype (+ Anzahl Zylinder) [halbhermetisch, 2-Zylinder ... Umlaufkolben]

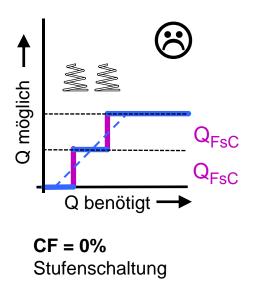
Verdichterauswahl [....]

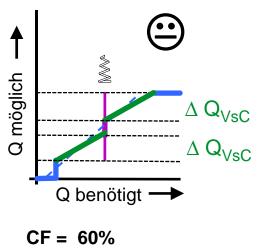
Spannung [3AC 230 V ... 3AC 480 V]

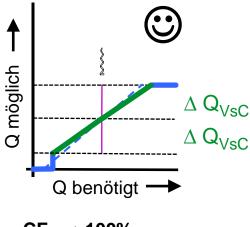
Elektr. Booster [400 / 440 / 480 V]

Motoranschluss [Stern, Dreieck, Teilwicklung]
Faktor Anlaufmoment [1.0, 1.9, 1.8]

FrigoPa	ck [®] SELECTION A	PP	Language:	English
COMPRES	SOR DATA INPUT			
Manufacturer:		DemoComp 🔻	Refrigerant:	R404A_R507 🔻
Type:		RS-4: Reciprocating, semi-hermetic, 4 cylinder		
			Frame size:	Displacement:
Compressor:	Chosen:	DCLM32.5Y	D3	32,5 m3/h
	Preferred for VsC:		CC:	100/50%
Electrical:	Supply Voltage:	4: 3AC 400 V; 50 Hz ▼	Elec. Booster ¹⁾ :	400 V ▼
	Motor connection ²⁾ :	S: Star	Max. current:	20,0 A
Start Torque F	Factor (STF) ³⁾ :	1,00		
FrigoPack [®]	SELECTION	FrigoPack [®]	Electrical input ⁴⁾ :	Electrical output ⁵⁾ :
FP FEP:	Classic Plus line Refrigeration Inverters	FP 7.5FEP-EMC	3: 20 A	35: 4 kW /9/35 A




Steuerfaktor (= CF, Control Factor)

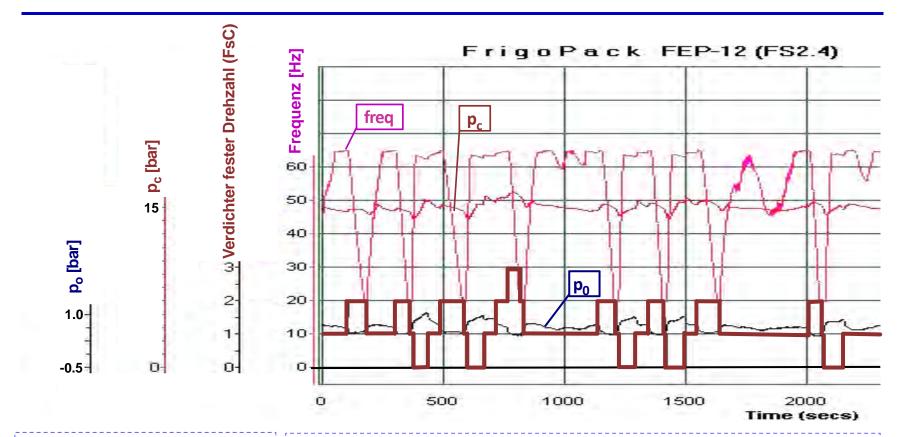

Definition: Steuerfaktor CF = Leistungsveränderung des Verdichters veränderbarer Drehzahl (△Q_{VSC})

Leistungsstufe des Verdichters fester Drehzahl (Q_{FSC})

Beispiel: 1x VsC (Verdichter veränderb. Drehzahl) + 1x FsC (Verdichter fester Drehzahl)

CF = 60%Gerade akzeptabel

CF = ≥100% Ausgezeichnet


Designziel: CF≥80%

Verdichter-Verbund-Design – Verbundkonfigurationen:

Beispiel eines schlechten Steuerfaktors

Anlage:

Supermarkt mit

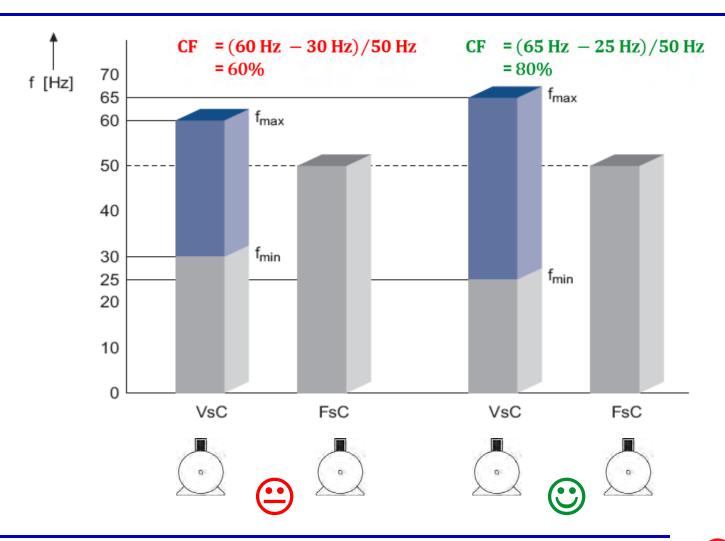
4-Verdichter-Verbund

Steuerfaktor:

Ursprünglich:

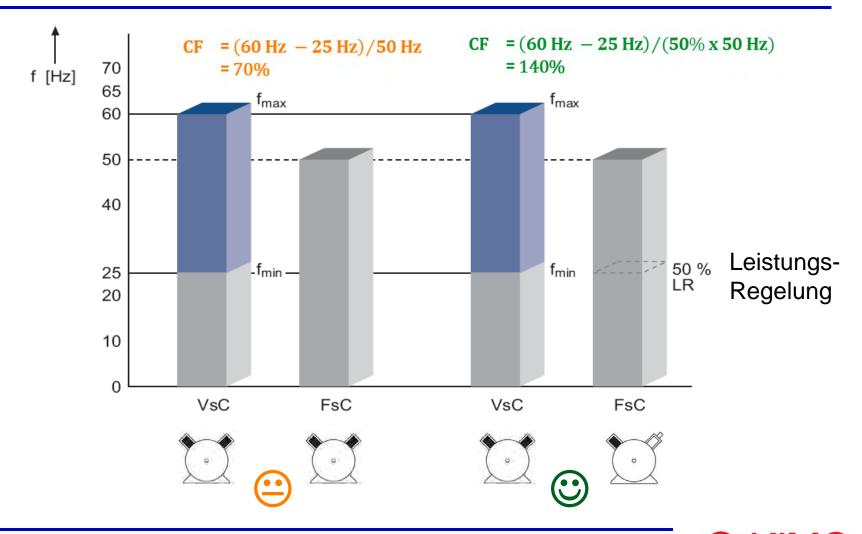
Mit erweitertem Frequenzbereich: 20 ... 65 Hz:

25 ... 60 Hz: 47%


60 %

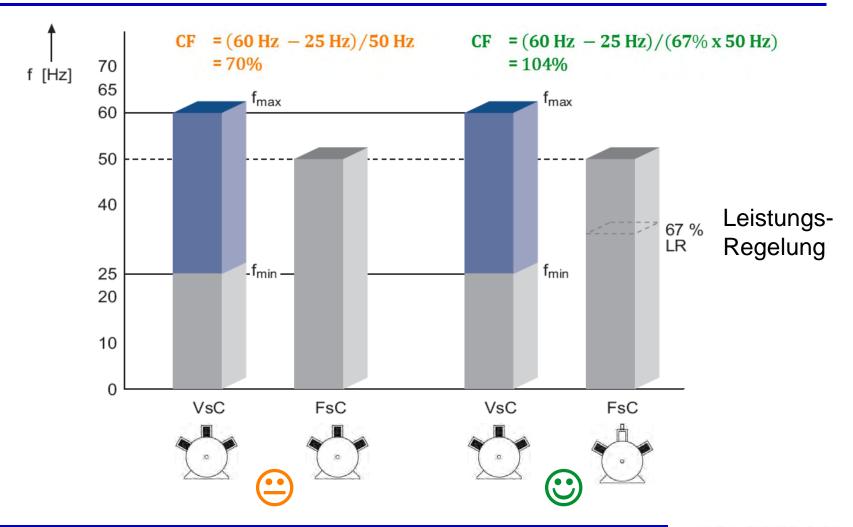
Verdichter-Verbund-Design – Verbundkonfigurationen:

2-Zylinder-Hubkolbenverdichter



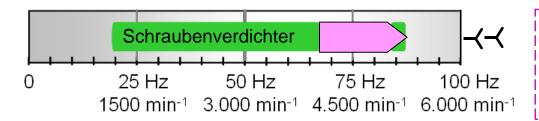
Verdichter-Verbund-Design – Verbundkonfigurationen:

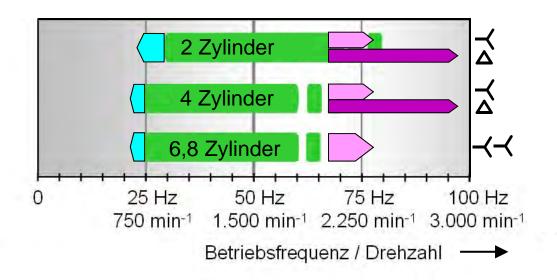
4-Zylinder-Hubkolbenverdichter



W

Verdichter-Verbund-Design – Verbundkonfigurationen:


6-Zylinder-Hubkolbenverdichter



Steuerfaktor: Intelligente Grenzwertverschiebung

f_{min} Limit: Automatisch selbstanpassend (Intelligente Grenzwertverschiebung)

Intelligente Grenzwertverschiebung:
Basierend auf:
Kältemittel,
p₀, p_c, t_s, t_d, M_{mot}

Steuerfaktor: f_{max} limit (am Beispiel 4-Zylinder)

Industrieumrichter

Klima: R404A +5 / +50 °C:

NK: R404A -10 / +45 °C:

≺: 60 Hz **△**: 87 Hz

R134a -10 / +45 °C

• TK: R404A -35 / +40 °C:

-⟨: 60 Hz <u>\(\(\)</u>: 87 Hz

Bemessungsstrom FU (≈Kosten):

≺: 100 % △: 167%

Kälteumrichter

Klima: R404A +5 / +50 °C:

• NK: R404A -10 / +45 °C:

R134a -10 / +45 °C

─(: **75 Hz △**: 87 Hz

• TK: R404A -35 / +40 °C:

—(: **75 Hz** <u>△</u>: 87 Hz

Intelligente Grenzwertverschiebung:

Basierend auf:

Kältemittel, p₀, p_c, t_s, t_d, M_{mot}

Steuerfaktor: Abschätzung von f_{max} Limit

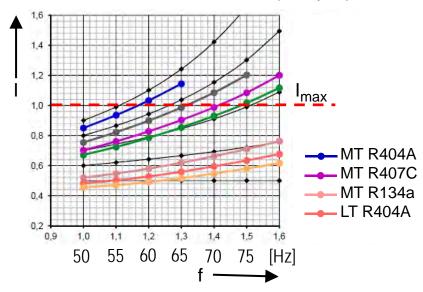

Mechanische Kriterien

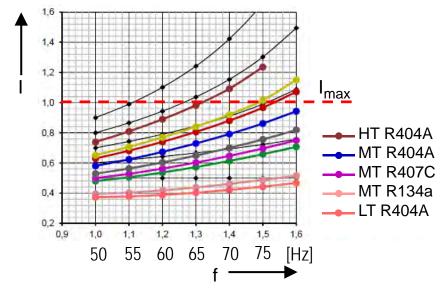
- Ölpumpe
- Druckgastemperatur
- Kolbengeschwindigkeit
- Hoher f_{max}
- → besserer Steuerfaktor
- → Weniger Verdichteranläufe
- Immer den Verdichterhersteller konsultieren

Elektrische Kriterien

- Maximaler Motorstrom
- Versorgungsspannung (Grenze im feldgeschwächten Bereich)

Motor-Ersatzschaltbild verwenden





Regelfaktor: f_{max} Limit bei Sternschaltung

Verdichter mit kleinem Motor (Beispiel):

Verdichter mit großem Motor (Beispiel):

Kleiner Verdichtermotor in Sternsch.

NK R404A: Nicht empfohlen

Großer Verdichtermotor in Sternsch.

NK R134a: kleiner Verdichtermotor bevorzugt **TK R404A:** kleiner Verdichtermotor bevorzugt

Auswahl-Software – Wo ist sie hilfreich?

COMPRESS	SOR DATA INPUT			
Manufacturer:		DemoComp ■ Refrigerant: R404A_R507 ■		R404A_R507
Type:		RS-4: Reciprocating, semi-hermetic, 4 cylinder		
			Frame size:	Displacement:
Compressor:	Chosen:	DCLM32.5Y	D3	32,5 m3/h
	Preferred for VsC:		CC:	100/50%
Electrical:	Supply Voltage:	4: 3AC 400 V; 50 Hz ▼	Elec. Booster ¹⁾ :	400 V
	Motor connection ²⁾ :	S: Star	Max. current:	20,0 A
Start Torque F	actor (STF) ³⁾ :	1,00		
FrigoPack [®]	SELECTION	FrigoPack [®]	Electrical input ⁴⁾ :	Electrical output ⁵⁾ :
FP FEP:	Classic Plus line Refrigeration Inverters	FP 7.5FEP-EMC	3: 20 A	35: 4 kW /9/35 A

Eingabe:

Kältedaten Verdichterdaten Elektrische Daten Anlaufbedingungen

Auswahl:

Kälteumrichter + Elektrische Daten für die Auslegungsplanung

FREQUENC	Y RANG	E	Maximum:	Minimum:	Control factor ⁶⁾ :
Operating	HT:	+5 / 50 °C:	60 Hz	25 Hz	70%
temperatures:	IT	0 / 45 °C:	67 Hz	23 Hz	88%
	MT	-10 / 45 °C:	75 Hz	23 Hz	104%
	LT	-35 / 40 °C:	75 Hz	25 Hz	100%
SPECIAL CONSIDERATIONS					

Leistung:

Klima: f_{min}, f_{max}, CF f_{min} , f_{max} , CF IT: NK: f_{min} , f_{max} , CF TK: f_{min}, f_{max}, CF

Installationsbeispiele

Kälte in der Nahrungsmittelherstellung

• Tiefkühlung:

- FU-geregelter VsCVerdichter:4 Zyl. Hubkolben
- Verdichter festerDrehzahl (FsC):2 x 6 Zyl. Hubkolben
- Kälteumrichter

Normalkühlung:

- FU-geregelter VsCVerdichter:6 Zyl. Hubkolben
- Verdichter fester
 Drehzahl (FsC):
 2 x 6 Zyl. Hubkolben
 100 / 67 %
 Leistungsregelung
 Steuerfaktor: 120 %
- Kälteumrichter

Installationsbeispiele

Supermarkt mit R744 Technologie (transkritisch)

• Tiefkühlung (Low Temp / LT):

Normalkühlung (MediumTemp):

Zwischendruck

Kälteumrichter mit optimiertem Steuerfaktor

IV

Installationsbeispiele

Großmarkt (R507A)

NK1: 6x Verdichter NK2: 5x Verdichter NK3: 4x Verdichter TK: 4x Verdichter

Alle 4x Kälteumrichter mit optimiertem Steuerfaktor:

	f _{min}	f _{max}	RF:
NK	23	68 Hz	90%
ΤK	23	70 Hz	94%

Installationsbeispiele

Kaltwassersatz (R407C)

Kaltwassersatz für Spritzgussmaschine

Prozesskühlung (R407C; 720 kW)

- 2x VsC: Schraubenverdichter
- 2x Kälteumrichter:
 - Optimierter Steuerfaktor
 - Integrierte, energie-optimierte Kaltwassersatz-Regelung

